III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

POWER ELECTRONICS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

UNIT-I1a)From the switching (or dynamic)L4CO471a)From the switching (or dynamic)L4CO471characteristics, how would you compare the turn-on and turn-off process of IGBT?L3CO27b)Illustrate the static VI characteristics of SCRL3CO27with necessary circuit diagram and waveforms.MaxCO27OR2a)How would you compare various types of Power Diodes with applications?L4CO47	larks 7 M
1a)From the switching (or dynamic)L4CO47characteristics, how would you compare the turn-on and turn-off process of IGBT?L4CO47b)Illustrate the static VI characteristics of SCR with necessary circuit diagram and waveforms.L3CO27OR2a)How would you compare various types of 	7 M
characteristics, how would you compare the turn-on and turn-off process of IGBT? Image: characteristics of SCR L3 CO2 7 b) Illustrate the static VI characteristics of SCR L3 CO2 7 with necessary circuit diagram and waveforms. Image: characteristics of SCR L3 CO2 7 2 a) How would you compare various types of Power Diodes with applications? L4 CO4 7	
b) Illustrate the static VI characteristics of SCR L3 CO2 7 with necessary circuit diagram and 1	
with necessary circuit diagram and waveforms. and waveforms. OR 2 a) How would you compare various types of L4 CO4 7 Power Diodes with applications?	
waveforms. OR 2 a) How would you compare various types of L4 CO4 7 Power Diodes with applications? L4 CO4 7	7 M
OR 2 a) How would you compare various types of L4 CO4 7 Power Diodes with applications? Image: Compare type of L4 CO4 7	
2a)How would you compare various types ofL4CO47Power Diodes with applications?IIII	
Power Diodes with applications?	
	7 M
b) Demonstrate the two transistor analogy of L3 CO2 7	
	7 M
SCR with relevant diagram and equations.	
UNIT-II	
	7 M
phase full wave fully-controlled bridge	
converter in the following two-modes	
(i) Rectifying mode (ii) Inversion mode.	
	7 M
converter is operates from a 3-phase star	

		connected 240V/50 Hz supply and the load			
		resistance is $R=20 \Omega$. If it is required to			
		obtain an average output voltage of 70% of			
		the maximum possible output voltage			
		determine			
		(i)Firing angle and			
		(ii) average value of output current .			
	-	OR			
4	a)	How would you explain with neat sketch	L4	CO4	7 M
		single phase half wave controlled rectifier			
		with R load and also derive the average			
		output voltage equation, output current			
		equation and also input power factor?			
	b)	1 2	L3	CO2	7 M
		converter is operates from a 3-phase star			
		connected 208V/50 Hz supply and the load			
		resistance is $R=10 \Omega$. If it is required to			
		obtain an average output voltage of 50% of			
		the maximum possible output voltage			
		determine, firing angle, RMS and average			
		value of output currents.			
		UNIT-III			
5			T /	CO5	7 M
5	a)	How would you explain 3-phase bridge inverter operation with 120 degrees	L4		/ 171
		conduction mode?			
	b)	A three-phase bridge inverter delivers	13	CO3	7 M
		power to a resistive load from a 450V dc	LJ	005	/ 11/1
		source. For a star-connected load of 10Ω			
		per phase, determine the RMS value of load			
		current for both conduction of $(i)180^{\circ}$ mode			
		and (ii) 120° mode.			
		OR			
		UN			

6	a)	What is pulse width modulated inverter?	L4	CO5	7 M				
		What are different Pulse-Width Modulation							
		(PWM) techniques used in inverter? Explain							
		any one Pulse-Width Modulation (PWM)							
		technique.							
	b)	Construct the Cascaded H bridge multilevel	L3	CO3	7 M				
		inverter with relevant switching activity.							
	UNIT-IV								
7	a)	With a neat sketch, explain the working	L4	CO4	7 M				
		principle and operation of four quadrant							
		chopper.							
	b)	A buck-boost converter has input voltage of	L3	CO2	7 M				
		24 V and it operates at 30Khz.When the							
		duty cycle is 0.4, L=500 μ H, C=147 μ F and							
		average load current is 1A, determine the							
		average output voltage and peak to peak							
		ripple current through the inductor.							
		OR							
8	a)	Explain the operation of Buck converter	L4	CO4	7 M				
		with circuit and waveforms.							
	b)	A DC-DC buck converter operates in	L3	CO2	7 M				
		continuous conduction mode. It has 48 V							
		input voltage and it feeds a resistive load of							
		24 Ω . The switching frequency of the							
		converter is 250 Hz. If switch-on duration is							
		1 ms, determine the load power.							
	UNIT-V								
9	a)	For a 1-phase full wave AC voltage	L4	CO5	7 M				
		controller feeding a resistive load, draw the							
		waveforms of source voltage, gating signals,							
		output voltage and voltage across the SCR.							
		Describe the working with reference to							
		waveforms drawn.							

	b)	Construct and explain the operation of step	L3	CO3	7 M		
		down cycloconverter with necessary circuit					
		diagram and waveforms.					
	OR						
10	a)	Draw the output voltage wave form of step	L4	CO5	7 M		
		up 1- Φ to 1- Φ midpoint cycloconverter for					
		$f_{in}=f_o/6$ and $\alpha=30^\circ$. Assume that load is R.					
	b)	A single-phase ac voltage controller has a	L3	CO3	7 M		
		resistive load of 20 ohms. The input voltage					
		is 220V rms at 50Hz. The delay angle of					
		thyristors is $\alpha = 40^{\circ}$. Calculate (i) rms load					
		voltage, (ii) power consumed.					