III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

POWER ELECTRONICS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	From the switching (or dynamic) characteristics, how would you compare the turn-on and turn-off process of IGBT?	L4	CO 4	7 M
	b)	Illustrate the static VI characteristics of SCR with necessary circuit diagram and waveforms.	L3	CO 2	7 M
OR					
2	a)	How would you compare various types of Power Diodes with applications?	L4	CO 4	7 M
	b)	Demonstrate the two transistor analogy of SCR with relevant diagram and equations.	L3	CO 2	7 M
UNIT-II					
3	a)	Describe the working principle of singlephase full wave fully-controlled bridge converter in the following two-modes (i) Rectifying mode (ii) Inversion mode.	L4	CO4	7 M
	b)	A 3-phase full-wave fully controlled converter is operates from a 3-phase star	L3	CO 2	7 M

		connected $240 \mathrm{~V} / 50 \mathrm{~Hz}$ supply and the load resistance is $\mathrm{R}=20 \Omega$. If it is required to obtain an average output voltage of 70% of the maximum possible output voltage determine (i)Firing angle and (ii) average value of output current .			
OR					
4	a)	How would you explain with neat sketch single phase half wave controlled rectifier with R load and also derive the average output voltage equation, output current equation and also input power factor?	L4	CO4	7 M
	b)	A 3-phase full-wave fully controlled converter is operates from a 3-phase star connected $208 \mathrm{~V} / 50 \mathrm{~Hz}$ supply and the load resistance is $R=10 \Omega$. If it is required to obtain an average output voltage of 50% of the maximum possible output voltage determine, firing angle, RMS and average value of output currents.	L3	CO 2	7 M
UNIT-III					
5	a)	How would you explain 3-phase bridge inverter operation with 120 degrees conduction mode?	L4	CO5	7 M
	b)	A three-phase bridge inverter delivers power to a resistive load from a 450 V dc source. For a star-connected load of 10Ω per phase, determine the RMS value of load current for both conduction of (i) 180° mode and (ii) 120° mode.	L3	CO3	7 M
		OR			

6	a)	What is pulse width modulated inverter? What are different Pulse-Width Modulation (PWM) techniques used in inverter? Explain any one Pulse-Width Modulation (PWM) technique.	L4	CO5	7 M
	b)	Construct the Cascaded H bridge multilevel inverter with relevant switching activity.	L3	CO3	7 M
UNIT-IV					
7	a)	With a neat sketch, explain the working principle and operation of four quadrant chopper.	L4	CO4	7 M
	b)	A buck-boost converter has input voltage of 24 V and it operates at 30 Khz . When the duty cycle is $0.4, \mathrm{~L}=500 \mu \mathrm{H}, \mathrm{C}=147 \mu \mathrm{~F}$ and average load current is 1 A , determine the average output voltage and peak to peak ripple current through the inductor.	L3	CO 2	7 M
OR					
8	a)	Explain the operation of Buck converter with circuit and waveforms.	L4	CO4	7 M
	b)	A DC-DC buck converter operates in continuous conduction mode. It has 48 V input voltage and it feeds a resistive load of 24Ω. The switching frequency of the converter is 250 Hz . If switch-on duration is 1 ms , determine the load power.	L3	CO 2	7 M
UNIT-V					
9	a)	For a 1-phase full wave AC voltage controller feeding a resistive load, draw the waveforms of source voltage, gating signals, output voltage and voltage across the SCR. Describe the working with reference to waveforms drawn.	L4	CO 5	7 M

	b)	Construct and explain the operation of step down cycloconverter with necessary circuit diagram and waveforms.	L3	CO3	7 M
OR					
10	a)	Draw the output voltage wave form of step up 1- Φ to $1-\Phi$ midpoint cycloconverter for $f_{\text {in }}=f_{o} / 6$ and $\alpha=30^{\circ}$. Assume that load is R.	L4	CO5	7 M
b)	A single-phase ac voltage controller has a resistive load of 20 ohms. The input voltage is 220 V rms at 50Hz. The delay angle of thyristors is $\alpha=40^{\circ}$. Calculate (i) rms load voltage, (ii) power consumed.	CO3	7 M		

